top of page

PUBLICATIONS

IMG_5200_edited.jpg

Pre-prints

  1. Garcia-Rosales F, Schaworonkow N, Hechavarria JC. 2023. Oscillatory waveform shape and temporal spike correlations differ across bat frontal and auditory cortex. bioRxiv, 2023-07. 

  2. Wetekam J, Hechavarria JC, Lopez-Jury L, Gonzalez-Palomares E, Koessl M. 2023. Deviance detection in subthalamic neural population responses to natural stimuli in bats. bioRxiv, 2023-07.

  3. Deane, K. E., García-Rosales, F., Klymentiev, R., Hechavarria, J. C., & Happel, M. F. (2022). The auditory cortex of bats has a better signal to noise ratio and lower inter-trial variability in response to stimuli trains than mice. bioRxiv, 2022-10.

Published articles

* indicates open access articles

  1. *Kiai A, Clemens J, Kössl M, Poeppel D, Hechavarría JC. 2023. Flexible control of vocal timing in bats enables escape from acoustic interference. bioRxiv, 2023-05. (accepted, Communications Biology)

  2. * Gonzalez-Palomares E, Boulanger-Bertolus J, Dupin M, Mouly AM, Hechavarria JC. 2023. Amplitude modulation pattern of rat distress vocalisations during fear conditioning. Scientific Reports 13, 11173. https://doi.org/10.1038/s41598-023-38051-7

  3. * Lopez-Jury- L, Rosales FG, Palomares EG, Wetekam J, & Hechavarria JC. 2022. A neuron model with unbalanced synaptic weights explains asymmetric effects of ketamine in auditory cortex. 2023. A neuron model with unbalanced synaptic weights explains the asymmetric effects of anaesthesia on the auditory cortex. PLoS biology, 21(2), e3002013.

  4. *García-Rosales F, López-Jury L, González-Palomares E, Wetekam J, Cabral-Calderín Y, Kiai A, ... & Hechavarría JC. 2022. Echolocation-related reversal of information flow in a cortical vocalization network. Nature Communications, 13(1), 1-15. doi.org/10.1038/s41467-022-31230-6

  5. Lopez-Jury L, Garcia-Rosales F, Gonzalez-Palomares E., Kössl M, Hechavarria JC. 2021. Acoustic context modulates natural sound discrimination in auditory cortex through frequency specific adaptation. Journal of Neuroscience. jn-rm-0873-21; *was the cover of J. Neuroscience’s issue #50, December 2021

  6. *Wetekam, J., Hechavarría, J., López‐Jury, L., & Kössl, M. 2021. Correlates of deviance detection in auditory brainstem responses of bats. European Journal of Neuroscience.

  7. *González-Palomares E, López-Jury L, Wetekam J, Kiai A, García-Rosales F, and Hechavarria JC. 2021. Male bats call more than females in a distressful context. Royal Society Open Science 8.5: 202336. doi.org/10.1098/rsos.202336

  8. *Beetz, JM, Kössl M, Hechavarría JC. 2021. The frugivorous bat Carollia perspicillata dynamically changes echolocation parameters in response to acoustic playback. Journal of Experimental Biology 224.6 

  9. *Gonzalez-Palomares, E., Lopez-Jury, L., Garcia-Rosales, F. and Hechavarria, J.C., 2020. Enhanced representation of natural sound sequences in the ventral auditory midbrain. Brain Structure and Function: 1-17.

  10. *Macias S, Bakshi K, Garcia-Rosales F, Hechavarria JC, Smotherman M. 2020. Temporal coding of echo spectral shape in the bat auditory cortex. PLoS Biology. 18 (11): e3000831

  11. *Garcia-Rosales, F., López-Jury, L., González-Palomares, E., Cabral-Calderín, Y., Kössl, M. & Hechavarría, J. C. 2020. Phase‐amplitude coupling profiles differ in frontal and auditory cortices of bats. Eur J Neurosci; 00: 1– 19. 

  12. *Hechavarría, J. C., Beetz, M. J., García-Rosales, F., & Kössl, M. 2020. Bats distress vocalizations carry fast amplitude modulations that could represent an acoustic correlate of roughnessScientific Reports, 10(1), 1-20.

  13. *Garcia-Rosales, F., López-Jury, L., González-Palomares, E., Cabral-Calderín, Y., & Hechavarría, J. C. 2020. Fronto-temporal coupling dynamics during spontaneous activity and auditory processing in the bat Carollia perspicillata. Frontiers in Systems Neuroscience, 14, 14.

  14. *Weineck K., García-Rosales F., and Hechavarría JC. 2019. "Fronto-striatal oscillations predict vocal output in bats. PLOS Biology 18(3): e3000658. https://doi.org/10.1371/journal.pbio.3000658

  15. Wetekam J, Reissig C, Hechavarria JC, Kössl M. 2019. Auditory brainstem responses in the bat Carollia perspicillata: threshold calculation and relation to audiograms based on otoacoustic emission measurement. Journal of Comparative Physiology A.

  16. *López‐Jury L, Mannel A, García‐Rosales F, & Hechavarria JC. 2019. Modified synaptic dynamics predict neural activity patterns in an auditory field within the frontal cortex. European Journal of Neuroscience.

  17. *García-Rosales F, Röhrig D, Weineck K, Röhm M, Lin Y H, Cabral-Calderin Y, Kössl M, Hechavarria JC. 2019. Laminar specificity of oscillatory coherence in the auditory cortexBrain Structure and Function, 224(8), 2907-2924.

  18. Beetz MJ, Kössl M, Hechavarría JC. 2019. Adaptations in the call emission pattern of frugivorous bats when orienting under challenging conditions. J Comp Physiol A.  205: 457. https://doi.org/10.1007/s00359-019-01337-1

  19. *García-Rosales F, Beetz MJ, Cabral-Calderin Y, Kössl M, Hechavarria JC. 2018. Neuronal coding of multiscale temporal features in communication sequences within the bat auditory cortex. Communications Biology. 20; 1:200. doi: 10.1038/s42003-018-0205-5. eCollection 2018.

  20. *García-Rosales F, Martin LM, Beetz MJ, Cabral-Calderin Y, Kössl M, Hechavarria JC. Low-Frequency Spike-Field Coherence Is a Fingerprint of Periodicity Coding in the Auditory Cortex. 2018. iScience. 2018 Nov 30;9:47-62. doi: 10.1016/j.isci.2018.10.009. 

  21. *Beetz MJ, Garcia-Rosales F, Kössl M, Hechavarria JC. 2018. Robustness of cortical and subcortical processing in the presence of natural masking sounds. Scientific Reports  8 (1): 6863. doi: 10.1038/s41598-018-25241-x.

  22. *Beetz MJ, Kordes S, Garcia-Rosales F, Kössl M, Hechavarria JC. 2017. Processing of natural echolocation sequences in the inferior colliculus of Seba’s fruit eating bat, Carollia perspicillata. eNeuro. 4 (6) 0314-17.2017. doi: 10.1523/ENEURO.0314-17.2017.

  23. Martin LM, García-Rosales F, Beetz MJ, Hechavarria JC. 2017. Processing of temporally patterned sounds in the auditory cortex of Seba's short-tailed bat, Carollia perspicillata. European Journal of Neuroscience. 46 (8): 2365-2379.

  24. *Schaeffer MK, Kössl M, Hechavarria JC. 2017. Laminar differences in response to simple and spectro-temporally complex sounds in the primary auditory cortex of ketamine-anesthetized gerbils. PLoS One.12 (8): e0182514.

  25. *Hechavarria JC, Beetz JM, Macias S, Kössl M. 2016. Vocal sequences suppress spiking in the bat auditory cortex while evoking concomitant steady-state local field potentials. Scientific reports; 6: 39226.

  26. *Beetz MJ, Hechavarría JC, Kössl M. 2016. Cortical neurons of bats respond best to echoes from nearest targets when listening to natural biosonar multi-echo streams. Scientific Reports. 6: 35991.

  27. Hechavarría JC, Beetz MJ, Macias S, Kössl M. Distress vocalization sequences broadcasted by bats carry redundant information. 2016. Journal of Comparative Physiology A. 202 (7): 503-15. doi: 10.1007/s00359-016-1099-7.

  28. Mihova D, Hechavarría JC. 2016. The electrocardiogram signal of Seba's short-tailed bat, Carollia perspicillata. Journal of Comparative Physiology A 202 (7): 517-26. doi: 10.1007/s00359-016-1098-8.

  29. *Beetz MJ, Hechavarría JC, Kössl M. 2016. Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences. Scientific Reports. 2016 6:29102. doi: 10.1038/srep29102.

  30. *Macías S, Hechavarría JC, Kössl M. 2016. Sharp temporal tuning in the bat auditory midbrain overcomes spectral-temporal trade-off imposed by cochlear mechanics. Scientific Reports 6:29129. doi: 10.1038/srep29129.

  31. Macías S, Hechavarría JC. 2016. Short delays and low pulse amplitudes produce widespread activation in the target-distance processing area of the auditory cortex of the mustached bat. Journal of the Acoustic Society of America 140 (2): 917. doi: 10.1121/1.4960547.

  32. Macías S, Mora EC, Hechavarría JC, Kössl M. 2016. Echo-level compensation and delay tuning in the auditory cortex of the mustached bat. European Journal of Neuroscience. 43(12):1647-60. doi: 10.1111/ejn.13244.

  33. Macías S, Hechavarría JC, Kössl M. 2016. Temporal encoding precision of bat auditory neurons tuned to target distance deteriorates on the way to the cortex. Journal of Comparative Physiology A. 202 (3): 195-202. doi: 10.1007/s00359-016-1067-2.

  34. *Kössl M, Hechavarria JC, Voss C, Schaefer M, Vater M. 2015. Bat auditory cortex – model for general mammalian auditory computation or special design solution for active time perception? European Journal of Neuroscience. 41 (5): 518-32. doi: 10.1111/ejn.12801.

  35. *Schaefer MK, Hechavarría JC, Kössl M. 2015. Quantification of mid and late evoked sinks in laminar current source density profiles of columns in the primary auditory cortex. Frontiers in Neural Circuits. 9: 52. doi: 10.3389/fncir.2015.00052. eCollection 2015.

  36. Macías S, Hernández-Abad A, Hechavarría JC, Kössl M, Mora EC. 2015. Level-tolerant duration selectivity in the auditory cortex of the velvety free-tailed bat Molossus molossus. Journal of Comparative Physiology A. 201 (5): 461-70. doi: 10.1007/s00359-015-0993-8.

  37. Mora EC, Fernández Y, Hechavarría J, Pérez M. 2014. Tone-deaf ears in moths may limit the acoustic detection of two-tone bats. Brain Behavior and Evolution 83(4): 275-85.

  38. Macias S, Hechavarria JC, Cobo A, Mora EC. 2014. Narrow sound pressure level tuning in the auditory cortex of the bats Molossus molossus and Macrotus waterhousii. Hearing Research 309:36-43.

  39. * Hechavarria JC, Kössl M. 2014. Footprints of inhibition in the response of cortical delay-tuned neurons of bats. Journal of Neurophysiology 111:1703-1716.

  40. Kössl M, Hechavarria JC, Voss C, Macias S, Mora EC, Vater M. 2014. Neural maps for target range in the auditory cortex of echolocating bats. Current Opinion in Neurobiology. 24: 68-75

  41. * Hechavarría JC, Macías S, Vater M, Mora EC, Kössl M. 2013. Blurry topography for precise target-distance computations in the auditory cortex of echolocating bats. Nature Communications. 4:2587, doi: 10.1038/ncomms3587.

  42. * Mora EC, Macías S, Hechavarría JC, Vater M, Kössl M. 2013. Evolution of the heteroharmonic strategy for target-range computation in the echolocation of Mormoopidae. Frontiers in Physiology. 2013; 4:141. doi: 10.3389/fphys.2013.00141.

  43. Macías S, Hechavarría JC, Kössl M, Mora EC. 2013. Neurons in the inferior colliculus of the mustached bat are tuned both to echo-delay and sound duration. Neuroreport. 24 (8): 404-9. doi: 10.1097/WNR.0b013e3283603f6d.

  44. Hechavarría JC, Macías S, Vater M, Mora EC, Kössl M. 2013. Evolution of neuronal mechanisms for echolocation: specializations for target-range computation in bats of the genus Pteronotus. Journal of the Acoustic Society of America. 133 (1): 570-8. doi: 10.1121/1.4768794.

  45. Macías S, Mora EC, Hechavarría JC, Kössl M. 2012. Properties of echo delay-tuning receptive fields in the inferior colliculus of the mustached bat. Hearing Research. 286 (1-2): 1-8.

  46. * Macías S, Mora EC, Hechavarría JC, Kössl M. 2011. Duration tuning in the inferior colliculus of the mustached bat. Journal of Neurophysiology. 106 (6): 3119-28.

  47. Hechavarría JC, Cobo AT, Fernández Y, Macías S, Kössl M, Mora EC. 2011. Sound-evoked oscillation and paradoxical latency shift in the inferior colliculus neurons of the big fruit-eating bat, Artibeus jamaicensis. Journal of Comparative Physiology A.197 (12): 1159-72.​

Opinions, Editorials & Articles for the general public

  1. De Hoz L, Busse L, Groh A, Hechavarria JC, Rothermel M. 2022. Sensing LOOPS: cortico-subcortical interactions for adaptive sensing. Neuroforum. https://doi.org/10.1515/nf-2022-0021

  2. *Happel, Max FK, Julio C. Hechavarría, and Livia de Hoz. 2022. Cortical-Subcortical Loops in Sensory Processing. Frontiers in Neural Circuits: 5.

  3. *Kössl M, Hechavarría JC. Smart bats click twice. 2018. Elife. pii: e36561. doi: 10.7554/eLife.36561. 

  4. Hechavarría JC, Kössl. 2017. Die Zeitkarte im Gehirn: wie Fledermäuse Raum in Zeit übersetzen. Forschung Frankfurt. 

bottom of page